Comprehensive Drowsiness Level Detection Model Combining Multimodal Information
نویسندگان
چکیده
منابع مشابه
Driver's Drowsiness Detection based on Visual Information
In this paper, a new Driver Assistance System (DAS) for automatic driver’s drowsiness detection based on visual information and image processing is presented. This algorithm works on several stages using Viola and Jones (VJ) object detector, expectation maximization algorithm, the Condensation algorithm and support vector machine to compute a drowsiness index. The goal of the system is to help ...
متن کاملCombining Classifiers in Multimodal Affect Detection
Affect detection where users’ mental states are automatically recognized from facial expressions, speech, physiology and other modalities, requires accurate machine learning and classification techniques. This paper investigates how combined classifiers, and their base classifiers, can be used in affect detection using features from facial video and multichannel physiology. The base classifiers...
متن کاملSpiking Cortical Model Based Multimodal Medical Image Fusion by Combining Entropy Information with Weber Local Descriptor
Multimodal medical image fusion (MIF) plays an important role in clinical diagnosis and therapy. Existing MIF methods tend to introduce artifacts, lead to loss of image details or produce low-contrast fused images. To address these problems, a novel spiking cortical model (SCM) based MIF method has been proposed in this paper. The proposed method can generate high-quality fused images using the...
متن کاملThe Mechanical Design of Drowsiness Detection Using Color Based Features
This paper demonstrates design and fabrication o f a mechatronic system for human drowsiness detection. This system can be used in multiple places. For example, in factories, it is used on some dangerous machinery and in cars in order t o prevent the operator o r driver from falling asleep. This system is composed of three parts: (1) mechanical, (2) electrical and (3) image processing system. A...
متن کاملDrowsiness Detection for Drivers Using Computer Vision
Drowsiness detection system is regarded as an effective tool to reduce the number of road accidents. This project proposes a non-intrusive approach for detecting drowsiness in drivers, using Computer Vision. The algorithm is coded on OpenCV platform in Linux environment. The parameters considered to detect drowsiness are face and eye detection, blinking, eye closure and gaze. Input is captured ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Sensors Journal
سال: 2020
ISSN: 1530-437X,1558-1748,2379-9153
DOI: 10.1109/jsen.2019.2960158